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ABSTRACT: Despite recent advances in synthetic nanometer-scale helical assembly,
control of supramolecular chirality remains a challenge. Here, we describe the fine-
tuning of the shape and morphology transitions of twisted and helical assembly from
dumbbell-shaped rigid-flexible amphiphile triggered by concentration. The amphiphile
2 self-assembles into nonchiral 3D columnar crystals with alternative packing of
aromatic segment in solid state. Remarkably, with the addition of water into the solid,
the achiral crystal transforms into 2D hexagonally ordered liquid crystal gel with supra-
molecular chirality due to increased entropy of flexible coil in aqueous environment.
Notably, the helical liquid crystal gel was observed to dissolve into optically active
aqueous nanofibers caused by a conformational change of hydrophobic aromatic rods
and enhanced hydro-volume of the ethylene oxide chains.

1. INTRODUCTION

The chiral induction from molecular level into well-defined
supramolecular nanostructure has been the subject of intense
study in recent years both for life and materials science.1−6 In
general, the chirality of supramolecular systems can be generated
by the assembly of chiral molecules through π−π stacking,7−9

hydrogen bonding,10−12 electrostatic interactions,13,14 and
coordination.15,16 Among them, chirality control of the helical
architectures is one of the highlighted topics in the applications
of chiral and sensing materials.17−19 Themajority of these studies
are reported in polymers,20−23 liquid crystalline phases,24 or
host−guest complexes25−28 systems by changing the external
conditions such as solvent, temperature, light, pH, or by
interaction with specific guests. Previously, we have reported
that fibrillar aggregates with reversible chiral-nonchiral states
could be obtained from a dumbbell-shaped rigid-flexible
amphiphile triggered by lower critical solution temperature
(LCST) of flexible oligoether dendritic chains in aqueous
solution.29,30 We have also found that the introduction of
ethylene oxide segment into aromatic rod gave rise to morpho-
logical transformation from isotropic solution to rigid gel upon
heating.31,32 The senses of chirality in self-assembled systems
are ascribed to a change of helical twisting power (HTP) or
a conformational change of the molecular backbones due to
supramolecular aggregations.33−37 Although stimulus-responsive
synthesized helix has been extensively studied, the mechanism for
the morphological twisting and bending remains a challenge.38,39

Herein, we report the formation of concentration responsive
helical assembly from the dumbbell-shaped rigid component as a

stem segment connected with a chiral oligoether chains as a
flexible part (Scheme 1) and investigate the chiral amplification
in the bulk, gel, and aqueous solution. Because of hydrogen
bonding and steric constraints, a new approach for the helicity
control from morphological transformation could be found by
dissolution of bulk solid.

2. EXPERIMENTAL SECTION

The synthesis of the rigid-flexible amphiphiles was per-
formed with the preparation of chiral oligoether chains and
9-arylcarbazole aromatic scaffold according to the procedure
described previously.29,30 The resulting compounds were
subjected to an etherification reaction, and thereafter, the final
compound was successfully synthesized by Suzuki coupling
with the biphenyl units. The analytical data from the resulting
molecules are in full agreement with the expected chemical
structures.

3. RESULTS AND DISCUSSION

The aggregation behavior of 1 and 2 in the bulk was investigated
by means of differential scanning calorimetry (DSC), thermal
optical polarized microscopy, and X-ray scatterings. All of the
block molecules show an ordered structure, and the transition
temperatures were determined from DSC scans (Figure 1A).
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The DSC thermograms showed 1 melts into isotropic liquid at
87.3 °C. On slow cooling from the optically isotropic phase of 1,
the formation of unique domains that correspond to a hexagonal
columnar texture could be observed between crossed polarizers
(Figure S2A, Supporting Information). This aggregated structure
of 1 was further confirmed by X-ray scattering experiments. The
small-angle X-ray diffraction (SAXS) pattern of 1 displayed three
sharp reflections with the ratio of 1:√3:2 in the low-angle region
that can be assigned as a 2D hexagonal columnar structure with
a lattice constant of 2.8 nm. The wide-angle X-ray diffraction
pattern only shows a diffused halo, which is due to liquid crystal
packing of the rod segments (Figure 1B). To further under-
stand the 2D structures, we performed circular dichroism (CD)
measurements with thin film of 1. As shown in Figure 2A, the
liquid crystal of 1 gives positive Cotton effect in the spectral
range of the aromatic units, indicating the helical stacks of the rod
segments with a preferred handedness.40,41 To prove that the CD
signal was not from artifacts, linear dichroism (LD) experiments
were performed. Figure S3, Supporting Information, shows the
LD values appeared to be negligibly smaller than those arising
from CD, demonstrating that the CD signal was from molecular
assemblies. In order to better confirm the formation of helical
structures, we calculated the number (n) of molecules in a unit
cell of the column. From the lattice constants and measured

density, the average number of molecules in a unit cell of the
column was estimated to be one. On the basis of these results and
extended aromatic length (3.3 nm by Corey−Pauling−Koltun
(CPK) molecular model), we consider that the neighboring
aromatic segments are stacked along the c axis with mutual
rotation to minimize a steric repulsion between bulky dendritic
segments to adopt helical arrangements.
We envisioned that a reduction of the cross-sectional area

of the flexible dendritic chain would result in the formation of
crystal aggregates.42,43 Indeed, the SAXS of 2 based on linear coil
shows a number of sharp reflections at room temperature with
some new peaks at wide angle (Figure 1B), indicative of the
existence of a highly ordered nanoscopic structure with three
distinct lattice parameters. These reflections indeed can be
indexed as an oblique columnar crystalline structure with lattice
parameters a = 3.0 nm, b = 2.3 nm, c = 1.2 nm, and γ = 67°.
Similar to that of 1 recorded at room temperature, the average
number of molecules is calculated and showed each bundle
consists of two molecules. However, in contrast to 1, no CD
signal could be detected from annealed sample 2, indicating that
the aggregated structure is optically slight even though 2 contains
chiral side groups. On the basis of these results, a possible model
is responsible for the generation of the nonchiral columnar
structure. The rod of 2 based on linear branched coil has a strong
tendency of anisotropic crystalline ordering to drive the rod
segments to aggregate in one dimension with an ABAB arrange-
ment through microphase separation between incompatible
molecular components and π−π stacking interactions, thus,
frustrating the chiral transfer from the side groups to the aromatic
cores, leading to a nonchiral column.
This structural progression from chiral to nonchiral columnar

formation suggests that the strongly packed crystal of 2 would
exhibit water-responsive chiral behavior due to the hydrophilic
ethylene oxide interacting with water molecules to increase
the coil volume.44 As shown in Figure 2C and S4, Supporting
Information, upon the addition of water, the compound of 2 at
high concentration (60−10 wt %) undergoes turbid gelation.
The optical polarized micrograph of the gels showed a
birefringent texture, which was typical of a liquid crystalline
phase (Figure S2B, Supporting Information). Optical experi-
ments reviewed the gel, which before and after evaporation
shows similar aggregated structures (Figure S5, Supporting
Information). As a further analysis, small-angle X-ray scattering
experiments were performed with dried film of the gel. The
small-angle X-ray scattering pattern from 35 wt % aqueous
solution of 2 also displayed three broad reflections with the ratio
of 1:√3:2 in the low-angle region, which corresponds to
hexagonal ordering with a lattice constant of 2.8 nm (Figure S2C,
Supporting Information). Notably, the CD spectra of the gel
showed strong CD signals over the absorption ranges (Figure 2B),
indicating the formation of helical structure with a preferred
handedness. The CD spectra did not change appreciably when
the concentration diluted to 10 wt %, suggesting that the helical
structure is stable within gel state.
As expected, the liquid crystal gel transforms into a fluid

solution as the concentration decreased to 6 wt %. Interestingly,
the absorption spectra sharply changed with further dilution
from the gel, accompanied by notable changes in the CD
patterns. In dissolved solution, absorption spectra of 2 was
significantly blue-shifted 20 nm with respect to liquid crystal gel
(Figure 2D), indicating that the effective conjugation within
aromatic rod is reduced.45 The CD spectra in aqueous solution of
2 showed that bisignate CD signal accompanied the absorption

Figure 1. (A) DSC traces (10 °C/min) recorded during the heating and
the cooling scan of 1 and 2. (B) X-ray diffraction patterns of 1 and 2
against q (q = 4π sin 2θ/λ) at room temperature (the inset is a partial of
SAXS of 1).
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Scheme 1. Molecular Structure of the Dumbbell-Shaped Aromatic Amphiphiles

Figure 2. (A) Absorption (black and square) and CD (red and circle) spectra of thin films of 1. (B) CD spectra of 2 in solid state (black and square), in
gel state (red and circle), and in aqueous solution (blue and triangle, 0.003 wt %). (C) Relative viscosities of 2 in aqueous solution. (D) Normalized
absorption of 2 in gel state (red and circle), and in aqueous solution (blue and triangle).
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band, which is attributed to the diminished excition coupling
between aromatic stacking due to reduced conjugation length
(Figure S5C, Supporting Information). To corroborate the
dissolved aggregation, TEM experiments were performed. When
the aqueous solution (0.01 wt %) is cast onto a TEM grid, then
stained with uranyl acetate reveals one-dimensional cylindrical
fibers with a uniform diameter of about 5.6 nm (Figure 3A).
Considering the observed lattice of the hexagonal columnar
structures from the liquid crystal gel of 2 is 2.8 nm, the increase
of diameter may be caused by hydrogen bonding between ether
oxygen and water molecules. The hydrated feature is reflected
in FTIR spectroscopic experiments. The IR of 2 from crystal
and gel states showed two characteristic bands at 1250 and
1105 cm−1, which corresponds to phenyl ring-O and aliphatic C−O
stretching, respectively. However, the band at 1105 cm−1 shifted to
1097 cm−1 in aqueous solution, indicating that the oligoether chains
are hydrated through hydrogen bonding interaction (Figure 3B).46

This unique feature of induction of chirality can be explained
by enhanced entropy of hydrophilic ethylene oxide coil and
variation in hydrodynamic volumes. When amphiphilic crystal
of 2 was exposed to aqueous solution, the coil wrapped up
hydrophobic aromatic rods and increased the cross-sectional
area of rigid-flexible segments to weaken anisotropic interaction
leading to the molecular chirality amplified into a one-
dimensionally stacked nanostructure. In diluted solution, the
ethylene oxide chains would be fully hydrated to increase the
effective volume fraction of oligoether chains, which requires a
larger interfacial area. To avoid the hydrophobic aromatic rod
confront in aqueous environment, the rod segments would be
slightly twisted to generate bigger hydrophobic area, giving rise
to a new helical arrangement (Figure 4).

4. CONCLUSIONS

In summary, we have demonstrated that dumbbell-shaped
aromatic amphiphile self-assembles into columnar crystal, liquid
crystal gel, and aqueous nanofibers consisting of aromatic cores
surrounded by hydrophilic oligo(ethylene oxide) coil. In the
solid state, the molecules were observed to self-assemble into
nonchiral columnar crystals with alternative packing of aromatic
segment. Notably, these crystals were shown to recognize water
by inducing supramolecular chirality. When the crystal exposed
to aqueous environment, the achiral crystal transforms into 2D
hexagonally ordered liquid crystal gel with supramolecular
chirality due to both entropy enhancement of hydrophilic

ethylene oxide coils and variation of anisotropic interaction of
rigid rods. Additionally, in further diluted solution, the ethylene
oxide chains would be hydrated and the 2D ordered liquid
crystalline gel dissolved into aqueous nanofibers, which results in
enhanced hydro-volume to force each aromatic rod to be twisted,
forming another helical structure. The unique feature in here
is their ability to adopt a tunable helical conformation with
reversibility in bulk, gel, and aqueous solution, triggered by
concentration. These results represent a significant example in
dynamic aggregated states triggered by external stimuli in the
chiral self-assembling systems, thus providing a useful strategy to
create supramolecular devices with chiroptical switching behavior.
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Figure 3. (A) TEM image of 2 from 0.01 wt % aqueous solution with density profile inset (scale bar, 100 nm). (B) FTIR spectra (1000−1275 cm−1) of 2
in solid (black and square), gel (red and circle), and aqueous solution (blue and triangle).

Figure 4. Schematic representation of water induced helical assembly
from nonchiral crystal to chiral liquid crystal gel and chiral aqueous
nanofibers.
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